Udemy – The AI Engineer Course 2025: Complete AI Engineer Bootcamp

Categories: Data Science
Wishlist Share
Share Course
Page Link
Share On Social Media

About Course

Udemy Original Course Link

 

The Problem

AI Engineers are best suited to thrive in the age of AI. It helps businesses utilize Generative AI by building AI-driven applications on top of their existing websites, apps, and databases. Therefore, it’s no surprise that the demand for AI Engineers has been surging in the job marketplace.

Supply, however, has been minimal, and acquiring the skills necessary to be hired as an AI Engineer can be challenging.

So, how is this achievable?

Universities have been slow to create specialized programs focused on practical AI Engineering skills. The few attempts that exist tend to be costly and time-consuming.

Most online courses offer ChatGPT hacks and isolated technical skills, yet integrating these skills remains challenging.

The Solution

AI Engineering is a multidisciplinary field covering:

  • AI principles and practical applications

  • Python programming

  • Natural Language Processing in Python

  • Large Language Models and Transformers

  • Developing apps with orchestration tools like LangChain

  • Vector databases using PineCone

  • Creating AI-driven applications

Each topic builds on the previous one, and skipping steps can lead to confusion. For instance, applying large language models requires familiarity with Langchain—just as studying natural language processing can be overwhelming without basic Python coding skills.

So, we created the AI Engineer Bootcamp 2024 to provide the most effective, time-efficient, and structured AI engineering training available online.

This pioneering training program overcomes the most significant barrier to entering the AI Engineering field by consolidating all essential resources in one place.

Our course is designed to teach interconnected topics seamlessly—providing all you need to become an AI Engineer at a significantly lower cost and time investment than traditional programs.

The Skills

1. Intro to Artificial Intelligence

Structured and unstructured data, supervised and unsupervised machine learning, Generative AI, and foundational models—these familiar AI buzzwords; what exactly do they mean?

Why study AI? Gain deep insights into the field through a guided exploration that covers AI fundamentals, the significance of quality data, essential techniques, Generative AI, and the development of advanced models like GPT, Llama, Gemini, and Claude.

2. Python Programming

Mastering Python programming is essential to becoming a skilled AI developer—no-code tools are insufficient.

Python is a modern, general-purpose programming language suited for creating web applications, computer games, and data science tasks. Its extensive library ecosystem makes it ideal for developing AI models.

Why study Python programming?

Python programming will become your essential tool for communicating with AI models and integrating their capabilities into your products.

3. Intro to NLP in Python

Explore Natural Language Processing (NLP) and learn techniques that empower computers to comprehend, generate, and categorize human language.

Why study NLP?

NLP forms the basis of cutting-edge Generative AI models. This program equips you with essential skills to develop AI systems that meaningfully interact with human language.

4. Introduction to Large Language Models

This program section enhances your natural language processing skills by teaching you to utilize the powerful capabilities of Large Language Models (LLMs). Learn critical tools like Transformers Architecture, GPT, Langchain, HuggingFace, BERT, and XLNet.

Why study LLMs?

This module is your gateway to understanding how large language models work and how they can be applied to solve complex language-related tasks that require deep contextual understanding.

5. Building Applications with LangChain

LangChain is a framework that allows for seamless development of AI-driven applications by chaining interoperable components.

Why study LangChain?

Learn how to create applications that can reason. LangChain facilitates the creation of systems where individual pieces—such as language models, databases, and reasoning algorithms—can be interconnected to enhance overall functionality.

6. Vector Databases

With emerging AI technologies, the importance of vectorization and vector databases is set to increase significantly. In this Vector Databases with Pinecone module, you’ll have the opportunity to explore the Pinecone database—a leading vector database solution.

Why study vector databases?

Learning about vector databases is crucial because it equips you to efficiently manage and query large volumes of high-dimensional data—typical in machine learning and AI applications. These technical skills allow you to deploy performance-optimized AI-driven applications.

7. Speech Recognition with Python

Dive into the fascinating field of Speech Recognition and discover how AI systems transform spoken language into actionable insights. This module covers foundational concepts such as audio processing, acoustic modeling, and advanced techniques for building speech-to-text applications using Python.

Why study speech recognition?

Speech Recognition is at the core of voice assistants, automated transcription tools, and voice-driven interfaces. Mastering this skill enables you to create applications that interact with users naturally and unlock the full potential of audio data in AI solutions.

What You Get

  • $1,250 AI Engineering training program

  • Active Q&A support

  • Essential skills for AI engineering employment

  • AI learner community access

  • Completion certificate

  • Future updates

  • Real-world business case solutions for job readiness

We’re excited to help you become an AI Engineer from scratch—offering an unconditional 30-day full money-back guarantee.

With excellent course content and no risk involved, we’re confident you’ll love it.

Why delay? Each day is a lost opportunity. Click the ‘Buy Now’ button and join our AI Engineer program today.

 
Show More

What Will You Learn?

  • AI Engineer တစ်ဦးဖြစ်လာဖို့အတွက် လိုအပ်သော နည်းပညာများ၊ ကျွမ်းကျင်မှုများ၊ ကိရိယာများကို စုံလင်အောင် သင်ယူရပါမယ်။
  • Artificial Intelligence (AI) ရဲ့အခြေခံအယူအဆတွေကို နားလည်ပြီး အခြေခံကောင်းကောင်း တည်ဆောက်နိုင်အောင် လေ့လာရပါမယ်။
  • Python ကို စတင်ရေးသားဖို့ လေ့ကျင့်ပြီး၊ Natural Language Processing (NLP) နဲ့ AI project များတွင် ဘယ်လိုအသုံးပြုရမယ်ဆိုတာ လေ့လာရပါမယ်။
  • AI နယ်ပယ်အကြောင်းကို နားလည်မှုရှိကြောင်း အင်တာဗျူးတွင် ပြသနိုင်အောင် သင်ယူရပါမယ်။
  • လက်တွေ့လုပ်ငန်းသုံးကိစ္စများတွင် ကိုယ်တိုင်ကျွမ်းကျင်စွာ အသုံးချနိုင်အောင် လေ့လာရပါမယ်။
  • Large Language Models (LLMs) ၏စွမ်းအားကို မှန်မှန်ကန်ကန် အသုံးချနိုင်အောင် သင်ယူရပါမယ်။
  • LangChain ကို အသုံးပြုပြီး Interoperable Components များကို ချိတ်ဆက်ကာ AI-driven applications များ ဖန်တီးနိုင်အောင် လေ့လာရပါမယ်။
  • Hugging Face ၏ AI tools များကို အသုံးပြုနိုင်အောင် နားလည်မှုရရှိအောင် သင်ယူရပါမယ်။
  • APIs ကို သုံးပြီး foundation models များနှင့် ချိတ်ဆက်အသုံးပြုနိုင်အောင် လေ့လာရပါမယ်။
  • Transformers နည်းပညာကို အသုံးပြုပြီး speech-to-text လုပ်ငန်းစဉ်များကို မြင့်မားစွာ ပြုလုပ်နိုင်အောင် သင်ယူရပါမယ်။

Course Content

Udemy – The AI Engineer Course 2025: Complete AI Engineer Bootcamp

  • 27:25
  • 02. Intro to AI Module Data is essential for building AI
    09:39
  • 03. Intro to AI Module Key AI techniques
    20:18
  • 04. Intro to AI Module Important AI branches
    14:34
  • 05. Intro to AI Module Understanding Generative AI
    37:35
  • 06. Intro to AI Module Practical challenges in Generative AI
    09:35
  • 07. Intro to AI Module The AI tech stack
    20:54
  • 08. Intro to AI Module AI job positions
    13:30
  • 09. Intro to AI Module Looking ahead
    10:20
  • 10. Python Module Why Python
    09:37
  • 11. Python Module Setting Up the Environment
    27:42
  • 12. Python Module Python Variables and Data Types
    12:24
  • 13. Python Module Basic Python Syntax
    11:33
  • 14. Python Module More on Operators
    07:47
  • 15. Python Module Conditional Statements
    13:35
  • 16. Python Module Functions
    18:37
  • 17. Python Module Sequences
    19:08
  • 18. Python Module Iteration
    17:59
  • 19. Python Module A Few Important Python Concepts and Terms
    23:11
  • 20. NLP Module Introduction
    07:18
  • 21. NLP Module Text Preprocessing
    40:13
  • 22. NLP Module Identifying Parts of Speech and Named Entities
    19:18
  • 23. NLP Module Sentiment Analysis
    17:29
  • 24. NLP Module Vectorizing Text
    08:20
  • 25. NLP Module Topic Modelling
    18:04
  • 26. NLP Module Building Your Own Text Classifier
    09:34
  • 27. NLP Module Categorizing Fake News (Case Study)
    49:27
  • 28. NLP Module The Future of NLP
    08:24
  • 29. LLMs Module Introduction to Large Language Models
    15:18
  • 30. LLMs Module The Transformer Architecture
    22:38
  • 31. LLMs Module Getting Started With GPT Models
    33:03
  • 32. LLMs Module Hugging Face Transformers
    26:23
  • 33. LLMs Module Question and Answer Models With BERT
    30:32
  • 34. LLMs Module Text Classification With XLNet
    25:38
  • 35. LangChain Module Introduction
    20:21
  • 36. LangChain Module Tokens, Models, and Prices
    09:36
  • 37. LangChain Module Setting Up the Environment
    12:59
  • 38. LangChain Module The OpenAI API
    16:41
  • 39. LangChain Module Model Inputs
    42:12
  • 40. LangChain Module Message History and Chatbot Memory
    32:37
  • 41. LangChain Module Output Parsers
    08:47
  • 42. LangChain Module LangChain Expression Language (LCEL)
    01:13:03
  • 43. LangChain Module Retrieval Augmented Generation (RAG)
    01:25:44
  • 44. LangChain Module Tools and Agents
    35:52
  • 45. Vector Databases Module Introduction
    12:18
  • 46. Vector Databases Module Basics of Vector Space and High-Dimensional Data
    14:36
  • 47. Vector Databases Module Introduction to The Pinecone Vector Database
    28:17
  • 48. Vector Databases Module Semantic Search with Pinecone and Custom (Case Study)
    01:01:23
  • 49. Speech Recognition Module Introduction
    16:37
  • 50. Speech Recognition Module Sound and Speech Basics
    12:34
  • 51. Speech Recognition Module Analog to Digital Conversion
    09:48
  • 52. Speech Recognition Module Audio Feature Extraction for AI Applications
    22:24
  • 53. Speech Recognition Module Technology Mechanics
    36:23
  • 54. Speech Recognition Module Setting Up the Environment
    14:39
  • 55. Speech Recognition Module Transcribing Audio with Google Web Speech API
    32:11
  • 56. Speech Recognition Module Background Noise and Spectrograms
    20:14
  • 57. Speech Recognition Module Transcribing Audio with OpenAI’s Whisper
    21:30
  • 58. Speech Recognition Module Final Discussion and Future Directions
    11:29
  • 59. LLM Engineering Module Introduction
    10:53
  • 60. LLM Engineering Module Planning stage
    43:46
  • 61. LLM Engineering Module Crafting and Testing AI Prompts
    22:42
  • 62. LLM Engineering Module Getting to Know Streamlit
    27:05
  • 63. LLM Engineering Module Developing the prototype
    46:01
  • 64. LLM Engineering Module Solving Real-World AI Challenges
    32:12
  • 65. AI Ethics Module Introduction to AI and Data Ethics
    21:33
  • 66. AI Ethics Module The Core Principles of AI Ethics
    15:21
  • 67. AI Ethics Module Ethical Data Collection
    17:19
  • 68. AI Ethics Module Ethical AI Development
    22:40
  • 69. AI Ethics Module Ethical AI Deployment
    21:49
  • 70. AI Ethics Module Ethical AI for End-Users Businesses
    16:11
  • 71. AI Ethics Module Ethical AI for End-Users Individuals
    09:33
  • 72. AI Ethics Module ChatGPT Ethics
    26:32
  • 73. AI Ethics Module Data and AI Regulatory Frameworks
    14:29

Student Ratings & Reviews

No Review Yet
No Review Yet